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Abstract

We compare two approaches to compute the isostatic response of
the Earths lithosphere to an external load. The lithosphere is modelled
as an incompressible, linear elastic solid. The two approaches differ
in the formulation of the problem and the capability to give accurate
solutions in the incompressible limit, the choice of the finite elements
used for discretization, and the solution strategy for the arising alge-
braic problem. Numerical experiments show that the when the two
approaches are comparable, they give identical results.

1 Introduction

In many fields of science, due to practical, technical, and/or econom-
ical obstacles, it is not possible to perform classical experiments to
obtain answers to our questions. In geophysics, for example, where
the length and time scales are enormous, laboratory and field experi-
ments are impossible to perform due to sheer size.

One particular problem from this field which has drawn lots of
attention lately, is to simulate the response of the outer part of the
Earth, the lithosphere, to glaciation and deglaciation. This in order to
enhance the safety predictions for long term nuclear waste repositories
in the bedrock of, for example, Scandinavia and Canada.

The scope of this paper is to compare the accuracy and efficiency
of two approaches to discretize the equations of linear isostasy for
glacial rebound, and to solve the arising linear system of equations.
The first approach is to reformulate the equations of linear isostasy
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onto a form that is suitable for standard finite element (FE) packages,
see for example [8] and the references therein. The main problem
with this approach is that the lithosphere is modelled as a purely
incompressible solid, and the commercial packages often cannot handle
the fully incompressible case.

The second approach is to pose the problem on mixed form which
is well posed also for the fully incompressible solid, and solve the
corresponding equations. For this we have developed our own code,
which is not only capable of handling the purely incompressible solid,
but also includes the first order terms in the equation of linear isostasy.

This paper is organized as follows. Section 2 contains a description
of the problem we want to solve, and in Section 3 and Section 4 the
two solution approaches are described. Section 5 contains a results
from numerical experiments, and the paper concludes with Section 6
where some conclusions are drawn.

2 Problem description

The moment balance equation for a (visco)elastic, pre-stressed body
in a constant gravity field reads,

—V.0—-V(u-Vpg)+ (V- -u)Vpo ={, (1)

where o is the Cauchy stress tensor, u are the displacements, pg is the
so-called pre-stress, and f is a body force. The third term on the right
hand side of Equation (1) describes the bouyancy of the compressed
material, and it vanishes for purely incompressible material since V -
u = 0. The second term describes the advection of the pre-stress,
which is a stress that is present in the solid before the application of
the external load. For further details on the model and the origin of
Equation (1) see, for example, [8].

Under the assumptions that the lithosphere is a homogeneous,
isotropic, linear, and purely elastic solid, the Cauchy stress tensor
is given by Hookes law,

o(u) = pe(u) + A(V - u), (2)

where e(u) = 0.5(Vu+VuT) is the strain tensor, and u = E/2/(1+v),
A =2uv/(1 —2v) are the Lamé coefficients. The material parameters
FE and v are the Young modulus and the Poisson number, respectively.

Remark 2.1 The description of the lithosphere as a purely elastic
solid is a simplification, but nevertheless tmportant to study. FEffi-
cient solution techniques for the purely elastic problem are of great



importance for the simulation of a viscoelastic solid since the response
of a wviscoelastic solid at a given time ty is a combination of the in-
stantaneous, purely elastic response, and a memory term, an integral
over previous responses. The memory term is numerically computed
as a sum over weighted Hookean responses at all previous times t;,
1=0,...,k—1, and these responses must be computed efficiently in
order to achieve an efficient viscoelastic solver.

Remark 2.2 The lithosphere is assumed to be homogeneous with re-
spect to the material parameters X and . This is of coarse a sim-
plification, but this assumption does not violate the generality of the
obtained results.

After combining Equation (1) and Equation (2), we arrive at the
equations of linear isostasy, formulated in terms of the displacements
u7

=V (pe(u)) = V(u-Vpo) + (V- u)Vpe —AV(V-u) =f,  (3)

and a finite element discretization of Equation (3) gives rise to the

algebraic problem
Ax = b, (4)

where A € RMeXNu ig a large and sparse matrix, and x € RNu and
b € RNu are vectors.

The two compared approaches differ in the formulation and FE
discretization of Equation (3), and the solution strategy for Equation

(4).

3 Approach I: ABAQUS

The first approach is based on the commercial finite element package
ABAQUS. The code being commercial has the advantage that it is
throughly debugged and optimized, but the disadvantage that it is not
designed to solve problems of the type of Equation (1) or Equation
(3), but rather the standard form of the moment balance equation for

an elastic solid
—V.o(u) =1,

that is, a problem without the first order terms arising from the pre-
stress advection and the bouyancy.
The remedy for this is to introduce the modified stress tensor

T(u) = o(u) —u- Vpol, ()



where I is the identity tensor, and solve
-V -T(u) =f (6)

instead. The solution to Equation (3) is retrieved from the solution to
Equation (6) in a post-processing step, see for example [8] for details.

The algebraic problem Ax = b is solved with a direct solver, pro-
vided by ABAQUS.

Remark 3.1 In Equation (5), the bouyancy term (V-u)Vpg is omit-
ted because this formulation is tailored to the case of incompressible
material (v = 0.5), where this term vanishes. In the problem for-
mulation in Section 4, the bouyancy term is present for the sake of
completeness of the analysis, but in the experiments reported in Sec-
tion &5 the bouyancy is omitted also in Approach II.

4 Approach II: Mixed u-p-formulation

In the incompressible limit, v — 0.5, and the Lamé coefficient A — oc.
This makes the problem in Equation (2) ill-posed, and the correspond-
ing stiffness matrix in Equation (4) extremely ill-conditioned. This is
the mathematical formulation of the phenomenon known as volumet-
ric locking, which leads to erroneous results when solving Equation (3)
in the nearly incompressible limit. See, for example, [6], for further
details on the locking effect.

The usual remedy to the locking problem is to introduce the kine-
matic pressure p = %V -u, and reformulate Equation (3) on mixed
form, which yields

=V - (ue(u)) = V(u-Vpo) + (V-u)Vpg — uVp = £
112 (7)
uV-u— S P= 0.

4.1 Finite Element Discretization

In this subsection we look into the properties of the finite element
problem corresponding to Equation (7) and derive a necessary bound-
ary condition to ensure the solvability and stability of the FE formu-
lation of it, which reads

Findue VCcCH'andpe P={pe L?: [,p =0} such that
a(u,v) +b(v,p) = f(v)+(Lvn) WEV, (8)
b(u7q) - C(pv q) = 07 Vq € P.



The bilinear forms in Equation (8) are
a(u,v) = /,us(u) ce(v)=V(u-b) v+ (V- -u)(c-v)dQ2

12

vup) = [u(V-wpde  cp.a) = [Lpadn
Q

(L, v) v-1dT

'—J\ iO\iO

where the vector fields b, ¢, and f are introduced to generalize the
problem. The boundary of the computational domain €2 is denoted
with T

Before we look into the properties of a(-,-), b(-,-), and c(, ), let us
state some prerequisites.

A solution to the variational problem (8) exists and is unique if
a(u,v), ¢(p,p) and b(u, p) are bounded,

awv) < aulvivly VuveV (10)
bv.p) < Blvilviple YueV,peP (11)
ep.a) < elpleldlr Ypa€ P, (12)

and if a(u,u) and ¢(p, p) are coercive on V and P, respectively. That
is, if

aul?, a>0 vuev (13
clpld, ¢>0 VpeP. (14)

AVARLY

As is clear from Equation (9) ¢(p,q) = 0, Vp,q € P corresponds to
v = 0.5. In this case, , Equation (8) is solvable if

e the conditions in Equation (10) - (12) hold,
e a(u,u) is coercive on the null-space of b(u, q),
e bh(u,q)=0 =q=0 VYVueV.

Furthermore, Equation (8) is stable if the following inf-sup (or Lady-
zhenskaya-Babuska-Brezzi or LBB) conditions are fulfilled,

inf sup M >a' >0, (15)
ueVyev |lullv|viv
and b

€Pvev [[Vilvilale

>



Note that when a(u,v) is coercive, Equation (15) is automatically
satisfied. See, for example [7] for details.

The coercivity of ¢(-,-) is straightforwardly seen and Equation 16
is guaranteed by the theory for the Stokes problem [6], but for a(-,-),
the situation is more complicated. In [3] we show that the bilinear
forms in Equation (8) are bounded, but that a(u, v), in general is not
coercive due to the first order terms, and the rest of this section will be
devoted to a discussion on the coercivity of a(u,v), in general and for
some special choices of boundary conditions and finite element spaces.

In order to clarify the coercivity of a(u,u), we split it into two
parts,

a(u,v) =a(u,v) +a(u,v), (17)
where
a(u,v) = /,ue(u) ce(v), (18)
Q
and

a(u,u) :—/V(u~b)-v—i—/(v-u)(c-v). (19)
Q Q

When homogeneous Dirichlet conditions are imposed on I'y C T,
Korns inequality gives

Kopllull? < &(u,u) < Kyplul2  vueV, (20)

for K1, Ko > 0, and the coercivity of a(u, u), the elastic part of a(u, u)
is guaranteed.
From Equation (17) it follows that

a(u,u) > a(u,u) —[a(u, u) (21)
that is, if a(u, u) is small enough, a(u,u) is coercive. In [3], we show

that B
a(u, v)| < d(a1 + B)[lull1][v]lo + daz|[ullo]|v]o

< d(or + B+ ax)l[ule vl ®)
where d denotes the number of spatial dimensions and
o |bi(x)<al|,i=1,....d,
e |V-b| <asz, and
o || <p.
By combining Equation (20) - (22), we see that for
pKi —d(ar + 5+ ag) >0, (23)

a(u,v) is coercive.



Unfortunately, in practice the Korn constant K is not known, and
the estimate in Equation (23) is not very useful. Therefore, we limit
ourselves to the investigation of the coercivity of a(u, v) on the kernel
of b(+,-), that is, the space of divergence-free functions

VOl={ve H': V- -v=0}.

After a reformulation of a(u,v) as

a(u,v) = /,us(u) ce(v) + /(u “b)(V-v) + /(V -u)(c-v)dQ
Q

Q

Q
- [ b)m-var,

r

we see that it reduces to

a(u,v) = /us(u) te(v) — /F(u -b)(n-v)dT, for u,v € VO. (24)
Q

Clearly, a(u,v) is coercive for some special (combinations of) condi-
tions on b, u, and v on I' such as

e b=0onT,
e u=0onT,
e ulbonl,
e and v LnonlT.

Those conditions are, with an exception for the Dirichlet condition
u = 0, fairly unphysical. A more realistic set of boundary conditions
is,

u = 0 only
on = 0 only | (25)
on = 1 onl}

where 1 is an external load. Note that Equation (25) is a specification
of the situation in Equation (8).
For the further analysis of the coercivity of a(,-) on V°, we observe
that
e(v) =puV(V-v)+uV xV X v, (26)

and that the first term of the right hand side vanishes on V°. Hence,
we get that

a(u,v):/quu-va+/uv-nxqu—/(u-b)(mv), (27)
Q

I'y I'y



where I'f, = T'y UT.
Development of the second integral (the first boundary integral)
in Equation (27) yields

/,uv-nxqu:

rp
/,uv-{V(u-n)—(n-V)u—(u-V)n—ux(Vxn)}
ry

= /,uvj {@(umz) — (nlﬁl)uj — (ukﬁk)n] — ejklelmnuk&ﬂnn}
ry

= /,U'Uj {wi0jn; — (urOk)nj + ni05u; — (M01)Uj — €k1€mnUKOmMin }
ry
:/,uv-{(n-VuT—n-Vu)—i—(u-VnT—u-Vn)—u>< (Vxm)}
ry
:2/,uv-{—n-W(u)+u-(VnT—Vn)—ux (Vxm)},
ry

where ¢;;;, is the Levy-Chevita symbol and the summation convention
uv; = >, u;v; is assumed. The tensor W(v) = 0.5(Vv — VvT), the
spin tensor, is the skew-symmetric part of the infinitesimal displace-
ment tensor. The strain tensor e(v) is the symmetric part.

Straightforward vector calculus reveals that, at least in two space
dimensions, (u-VnT —u-Vn)—ux (V xn) = 0, and we can therefore
establish that

a(u,u) > Cljully Yu € Vy,

where C is a positive constant, holds when
2un-W(u) +n(u-b)=0 onTfy,. (28)

That is, to ensure the coercivity of a(-,-) on V?, an additional bound-
ary condition, which ensures that the amount of stress that is carried
to the boundary by the pre-stress advection is balanced by a rotational
stress on the boundary must be applied to the system .

4.2 Algebraic Problem

After the FE discretization, the algebraic problem corresponding to
Equation (7) takes the form,

I FEA IR

8



where M € RN«*Nu ig non-symmetric, sparse and in general indefinite,
and C™Vv*Np is positive semi-definite.

The algebraic problem in Equation 29 is solved with an iterative
solution method, preconditioned by the block-lower triangular matrix

D:{% 122}, (30)

where the first diagonal block D; approximates M, and the second
diagonal block, Ds, approximates the negative Schur complement of
A, S = C+ BM'BT. See for example [5] for further details on
preconditioners and solution techniques for saddle point problems.
The construction of Dy is inspired by the assembly of A. The
global stiffness matrix is assembled from element stiffness matrices

Mgp BT
A:ZAE where AE:[B; —CJ?E}’
E

and for non-singular Mg, we compute the exact Schur complement of
Ag, S =Cg + BEMngT. We then assemble these local contribu-
tions to form Dy, Dy =) 5 Sg. See [3] for details.

In order to ensure the non-singularity of Mg on elements away from
a Dirichlet boundary, Mg is regularized by a small positive number,

Mg = M + eh?I, (31)

where € > 0 is an arbitrary parameter and h is the discretization
parameter. The nonsingular Mg is used to to compute the modified
local Schur complements S g, Ce+ BpMpg BT which are used in the
assembly of Do, Dy =" 5 Sp.

When D is applied, D; and D, are solved with an inner iterative
solution method, preconditioned by a robust multilevel preconditioner,
see [4] for details.

In this Approach, we use a code developed by the first author. This
code is based on the open source packages PETSc [1] and deal.II [2].

5 Experiments

The numerical experiments are performed on the following problem
setting:

Problem 5.1 A 2D flat Earth model, which is symmetric with respect
to x = 0, is subjected to a Heaviside load of a 1000 km wide and 2
km thick ice sheet. The size of the domain is 10 000 km width and



4000 km depth and the boundary conditions are homogeneous Dirichlet
conditions on the boundary y = —4000 km and symmetry conditions
on the boundary x = 0. Homogeneous Neumann conditions on the
boundary x = 10000 km and on the boundary segment y = 0, x > 1000
km. The Young’s modulus of the solid is 400 GPa, and its density p,
is 8000 kg m~3. The density of the ice is 981 kg m~3. The Poisson
ratio v € [0.2,0.5].
The pre-stress is hydrostatic, i.e.

Po = —prgX-€q

where g=9.81 kgms~2 is the gravity constant and eq is the unit vector
directed downwards.

Remark 5.1 For Problem 5.1 the bilinear form a(u,v) can be shown
to be coercive for incompressible material, but for compressible materi-
als the situation is not clear. The numerical experiments on the other
hand do not show any kind of unstable behaviour for v < 0.5, which
indicates that the advection term is small enough, and the estimate in
Equation (23) holds.

The domain is discretized with uniform rectangular finite elements.
In Approach I standard bilinear basis functions are used, whereas in
Approach II, a pair of stable, modified Taylor-Hood (Q1 -iso Q1)
bilinear basis functions are used. That is, the basis functions for the
displacements u live on a mesh that is a uniform refinement of the
mesh on which the pressure variables p live. The meshes are chosen
such that the number of displacement degrees of freedom are the same
in Approach I and Approach II.

In Approach II, the generalized conjugate gradient - minimized
residual (GCG-MR) method is chosen as iterative scheme for the outer
and the two inner iterative solver. For robustness and efficiency rea-
sons the preconditioner D; is taken as a multilevel preconditioner for
the scaled vector-valued Laplacian matrix

d
(D1)ij = Z VU;(;) : VU;(CZ)y
k=1

instead for the matrix M, see [4] for details. The algebraic problem
in Equation (29) is solved to an accuracy of six orders of magnitude
relative to the initial residual, and the inner iterative solvers for D;
and Dy are solved to a relative accuracy of 0.5 and 0.1, respectively.
This choice of these parameters, and the multilevel preconditioner for
D, are found to give the smallest overall solution times.
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N [u(05,01) p(0501)] u(1,01) p(L,0.1)
1583 |  4e-07 1e-08 4607 2¢-03
6043 | 4e-10 6e-09 4e-10 6e-09

23603 | 5e-08 9e-09 5e-08 9e-09
u(5,0.1) p(5,0.1) | u(10,0.1) p(10,0.1)
1583 |  4e-07 6e-08 4607 1e-07
6043 |  4e-07 6e-08 4e-07 8e-08
23603 | 5e-08 9e-09 5e-08 9e-09

Table 1: The relative error in the solution, depending on the parameter e
in Equation (). The errors are measured in [*-norm, that is u(ey,ez) =
|ue, — Uey |12/ || 0ey |12, and similarly for p. N denotes the problem size. The
Poisson number v = 0.3.

The problem sizes N respited in the Tables 1 - 5 refer to the size of
the algebraic problem in Approach II, which, due to the choice of finite
elements, is approximately 11 % larger than the algebraic problem in
Approach 1.

5.1 Results

In Table 1, the dependency of the solution from Approach II on the
parameter € in Equation (31) for different problem sizes is shown. The
errors in Table 1 are measured relative to the solution corresponding
to the smallest regularization parameter (e = 0.1), and as is clear from
the table, the impact of € is negligible in the parameter range and for
the problem sizes investigated.

In Tables 2, 3, and 4, relative errors for different problem sizes and
Poisson number are shown on two different depths in the lithosphere,
on the surface (0 km) and in the vicinity of the transition region
between the crust and the upper mantle (62.5 km), the Mohorovi¢i¢
region. The experiments reported in Tables 2 and 3 are performed to
verify that the two approaches deliver the same result, and therefore
the advection of the pre-stress is omitted because the difference in
the treatment of this term between Approach I and II should lead to
different results.

Table 2 shows the relative error in the solutions from Approach I
and II for two values of v far from the incompressible limit, that is, in
the region of the parameter range where Approach I should not suffer
from locking effects. For increasing problem size, the error approaches
the error approaches the precision in the output from PETSc (five
digits).

11



v

0.2

0.3

depth(km)

0 62.5

0 62.5

N = 23603
N = 93283
N = 370883

0.00054601 0.00041437
0.00018977  9.4125e-05

0.00090089  0.00052987
0.00033034 0.00011011

3.5814e-05

3.5327e-05

5.4699¢-05

3.7304e-05

Table 2: The relative error in [?>-norm between the displacement from the two
solution approaches. N denotes the problem size, and v denotes the Poisson

number.

depth(km) 0 62.5
v =202 3.5814e-05  3.5327e-05
v=20.3 5.4699e-05  3.7304e-05
v=04 0.00013178 4.3554e-05
v =0.45 0.00018893 5.4707e-05
v =047 0.00021319 5.7848e-05
v =049 0.00023803 6.4616e-05
v = 0.4999 0.00024976  6.5966e-05
v =0.49999 | 0.00024983 6.559e-05
v =0.499999 | 0.0002501 6.5616e-05
v = 0.4999999 | 0.0002505 6.6535e-05

Table 3: |lur — ug||;2/||uml)iz for different Poisson number v, where uy,i =
I, IT is the solution from approach i. The pre-stress advection is omitted and

the problem size is N = 370883.
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depth(km) 0 62.5
v =02 0.13425  0.13442
v=0.3 0.10329  0.10294
v=204 0.055008 0.054138
v =045 0.032919  0.03229
v =047 0.030324 0.029921
v =0.49 0.032096 0.031792
v=0.4999 |0.033775 0.033453
v =0.49999 | 0.033791 0.033467
v =10.499999 | 0.033792 0.033468
v =0.4999999 | 0.033789 0.033463

Table 4: |[ur — ugg||;2/||umnl)iz for different Poisson number v, where uy,i =
I, II is the solution from approach 7. The pre-stress advection is included
and the problem size is N = 370883.

Phase Pre-processing Solving
Approach I IT I I1
N = 6043 1 0.65332 | 1.0977 1.1856 (0.51367)

N =23603 | 3.326 2.6387 | 4.7178  4.7256 (1.7803)
N =93283 | 13.018 10.5928 | 18.055  21.293 (8.9258)
N = 370883 | 50.537 42.6699 | 72.984 95.3594 (41.0166)
N = 1479043 | 269.06 171.891 | 317.48 686.564 (213.082)

Table 5: The CPU time spent on a pre-processing step and the solution of
the problem for different problem sizes for the two approaches.The figures in
the parentheses is the time spent by the iterative solver. The Poisson number
v=20.3

The behaviour of Approach I and II in the incompressible limit is
shown in Table 3. The relative error between solutions up and ury
for all values of v < 0.4999999 is of the order of the precision of the
output from PETSc, and no signs of locking effects for Approach I can
be seen.

In Table 4 the relative error between the solutions from Approach
I and II are shown the advection of the pre-stress is included in the
model. As can be seen from the table, the different ways to treat this
term leads to a relative error of between 3% and 13 %, depending on
the value of the Poisson number.

Table 5 show the time spent on the pre-processing phase and the
solution phase of the two approaches for different problem sizes N.
For Approach II, the pre-processing is the assembly of the stiffness

13



matrix, and for Approach I, it is probably the same. The solution
phase for Approach II contains the construction of the preconditioner
and the time spent by the iterative solution method. The time spent
on the latter is reported within parentheses in the rightmost column
of Table 5.

The problem size NV in Table 5 refer to the size of the saddle-point
problem in Equation (29). One shall bear in mind when comparing the
times in the table that the algebraic problem to solve in Approach 11
is approximately 11% larger than the problem in Approach I because
of the choice of the stable pair of mixed finite element spaces.

6 Conclusions

In this paper, we have reported on the current status of an ongoing
project aimed at the development of an efficient and accurate code for
simulation of the isostatic viscoelastic response of the lithosphere of
the Earth to glaciation and deglaciation.

We have reported results from two different approaches to formu-
late and solve the equations of the purely elastic isostatic response.
The approaches differ in the capability to handle the case of a purely
incompressible limit, how the advection of pre-stress is treated, and
how the algebraic problem arising after a finite element discretization
is solved. In the case where we can compare the two methods, that is
for not purely incompressible material and without advection of pre-
stress, the two approaches give the same result, independently of the
problem size, the Poisson number or the regularization parameter e.

With the pre-stress advection added to the problem, the solutions
given by Approach I and II differ, but this is what could be expected
since this term is treated differently for the two cases.

Also included in this paper is derivation of a boundary condition
that guarantees the solvability of the problem formulation in Approach
II for the case of a purely incompressible solid and a general advection
of the pre-stress. This boundary condition is not, however, necessary
to invoke on the problem setting used for the reported numerical ex-
periments because of the special geometry of the problem and the
special form of the pre-stress.
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